
Liveness, Localization and Lookahead:
Interaction elements for parametric design

Maryam M. Maleki, Robert F. Woodbury, Carman Neustaedter
School of Interactive Arts and Technology, Simon Fraser University

250 - 13450 102nd Avenue, Surrey, British Columbia, V3T 0A3, Canada
{mmaleki, robw, carman neustaedter}@sfu.ca

ABSTRACT
Scripting has become an integral part of design work in
Computer-Aided Design (CAD), especially with parametric
systems. Designers who script face a very steep learning
and use curve due to the new (to them) script notation and
the loss of direct manipulation of the model. Programming
In the Model (PIM) is a prototype parametric CAD system
with a live interface with side-by-side model and script win-
dows; real-time updating of the script and the model; on-
demand dependency, object and script representations in the
model; and operation preview (lookahead). These features
aim to break the steep learning and use curve of scripting into
small steps and to bring programming and modeling tasks
‘closer together.’ A qualitative user study with domain ex-
perts shows the importance of multi-directional live scripting
and script localization within the model. Other PIM features
show promise but require additional design work to create a
better user experience.

Author Keywords
Qualitative methods; Creativity support tools; User studies;
End-user programming; Computational design;
Computer-aided design; Parametric Design.

ACM Classification Keywords
H.5.2 User Interfaces, Graphical user interfaces
J.6 Computer-Aided Engineering, Computer-aided design:
D.2.6 Programming Environments, Interactive Environments

INTRODUCTION
Architects and engineers use Computer-Aided Design (CAD)
systems to design and represent buildings and products. Typi-
cal CAD systems present a two or three dimensional model of
the design to the users and allow them to directly manipulate
objects in the design using the graphical user interface (GUI).
Sometimes though, designers reach the limits of the CAD
GUI, which they can only overcome by writing programs or
scripts in order to have the freedom to explore unconventional
and complex forms [1]. This is especially true in parametric

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DIS’14, June 21 - 25 2014, Vancouver, BC, Canada
Copyright c© 2014 ACM 978-1-4503-2902-6/14/06$15.00.
http://dx.doi.org/10.1145/2598510.2598554

CAD systems when designers design by manipulating the un-
derlying data structure of the geometric model and by defin-
ing relationships among geometric components [24]. In re-
cent years, parametric systems have become widespread in
CAD practice, yet remain difficult to use and learn. Indeed,
several recent books focus on enabling more effective use of
such systems [24, 12] and there are international workshops
on fostering advanced communities of practice [18].

These domain experts who write programs become end-user
programmers [7]. They face a challenge when they move
away from the CAD domain and enter the computer program-
ming space. Their goal is not to become professional pro-
grammers or to create the most efficient, reusable code, but
to write code to support themselves in the task to hand [15,
24]. Because programming is just another tool for them, they
weigh the perceived cost and risk of learning and using pro-
gramming against the benefit that it brings to their work. In
the attention investment model [4], if a system looks too hard
and the attention cost of learning and using it seems too high,
end-users will balk, which means they will not benefit from
using it in their work. Further, end-user programmers often
interpret barriers to learning and use as insurmountable [14]
and have what has been described in the CAD domain as ‘fear
of code’ [19]. Note well the two terms ‘learning’ and ‘use’:
both apply. A person learning a system aims to discover how
to achieve tasks in the system’s notation. A person using a
system aims to have the appropriate notation available with
minimal distraction from the task to hand. Attention invest-
ment and barriers apply to both learning and use.

The goal of our research is to reduce the perceived
cost/benefit ratio and barriers to programming in CAD for
designers. Our main strategy, which we call Programming
in the Model (PIM) is to break down the learning and use
process into small, accessible and reorderable steps; and sit-
uate these within or relate them to the CAD GUI. At the out-
set, we did not know, nor did the literature provide, features
that might meet these goals. Thus we undertook an iterative
design and prototyping process in which we had regular re-
views with experts in parametric CAD. The result is the PIM
system, which has features such as a live interface with side-
by-side model and script windows with fine-grained realtime
updating, fragments of the script and dependency represen-
tation locally available in the model, and user-customizable
preview (lookahead into the future model) with user actions.
We imagine these techniques to be applied to existing CAD
systems to break the steep learning and use curve of script-



ing into small steps and to bring programming and modeling
tasks ‘closer together.’ By doing so we hope to reduce the
fear of code in designers and make programming a tool in
their design process.

Within this design space, we have not found any studies in the
literature that show evaluations of such features to understand
user reactions to them. To address this, we conducted a qual-
itative study of the PIM system. The goal of the study was to
assess different programming in the model features to under-
stand how users interact with them, which features create pos-
itive experiences, which features are challenging to use, how
features might be improved, and, overall, which features may
benefit other fully functional CAD systems. Our results illus-
trate the importance of multi-directional live scripting where
users are able to easily move between scripting and working
with the model in a fast and efficient manner. We also learned
that localizing fragments of one view in others is valuable,
but requires careful design to ensure good user experience.
Lastly we learned that preview has real potential as an er-
ror prevention and debugging tool. The implication is that
commercially-available CAD systems should strongly con-
sider incorporating immediate liveness, if not what we term
‘extreme liveness,’ into their interfaces. When it comes to
other features, designers should consider preview and local-
ization features that build on our study results.

In what follows, we briefly present background research and
related work and explain Programming In the Model. Next,
we explain the results of the study in more detail and discuss
design implications for CAD systems.

BACKGROUND AND RELATED WORK
According to Blackwell [4], loss of direct manipulation and
introduction of a new notation are two main features of pro-
gramming tasks. In CAD, direct manipulation is the primary
method of interaction with the model. Users click on geo-
metric objects such as points and lines to edit them, click on a
location in the model space to specify coordinates, and click
and drag parts of the model to move or scale them. Program-
ming in CAD is usually done in a scripting window that is
separate from the model and in most cases temporarily blocks
access to the model until the script window is closed. Mod-
elling notation consists of line, curve, surface and solid com-
ponents, move, rotate, copy and scale operations, and dimen-
sions and materials. The scripting language has a very differ-
ent notation that may include functions and loops and condi-
tionals, classes and instances, arguments, variables and types,
and commas, semicolons, and brackets.

During a modelling task, the user interacts with the model to
create and modify objects and their relationships with other
objects. During programming however, they have to focus
their attention on a new window and interact with program-
ming elements instead of the model that is the object of their
design. As a result, they lose the benefits of direct manipula-
tion including immediate visual feedback to their actions [20]
and the sense of directness between their thoughts and the ac-
tions of the system [11].

Dertouzos [10] and later Myers [17] introduce the concept of
a gentle slope system. In such systems, to do a customization,
users only need to learn a small number of features. In other
words, they must climb only a small step to move forward.
Some systems require a huge amount of learning before users
are able to get a task done. Often, they hit a wall (or barrier)
that they need to surmount before they can continue (See Fig-
ure 1). For example, spreadsheets are relatively easy to use,
up until the point when the users open VBA (Visual Basic for
Applications) to write a piece of code. That is when they face
a steep learning curve because of the new programming lan-
guage and lack of direct access to the spreadsheet interface.
Ko and Myers [14] argue that such barriers can effectively be
insurmountable and present six barrier types: design, selec-
tion, coordination, use, understanding and information.

Attention investment, gentle-slope systems and barriers are
useful analytic ideas, but do not provide guidance for de-
sign. For this we turn to exemplary systems. Multi-view,
multi-level interaction is an established principle in paramet-
ric CAD [3], with a focus more on how each view contributes
to design, rather than on the impacts of having multiple views.
In contrast, some system developers argue that designers need
immediate connection to what they are creating [22], and pro-
gramming environments can facilitate or take away that con-
nection. According to Victor [23], immediate visual feed-
back to programming actions shows their effect on the de-
sign and lets the designers react to them right away. He also
recommends starting with something concrete that is com-
pletely understood before generalizing it, and making every-
thing transparent, from the flow of the program to the state
of variables to make a more learnable programming environ-
ment for designers.

Khan Academy has recently launched a programming inter-
face for beginners that has a one-way liveness from code to
graphics [13]. A line of code is immediately rendered when
it is completed and sliders in the coding interface are used to
change numeric values, with immediate results displayed vi-
sually on the final design. Autodesk’s DesignScript [2] has
also implemented similar one-way liveness from the script to
the CAD model.

Liveness, when implemented, is largely one-way, typically
from the more to the less symbolic interface. Further, we
do not know of any studies that evaluate liveness in CAD
systems. An example of a two-way live interface is Adobe
Dreamweaver, in which the screen can be split between code
and result, and visual elements of the webpage can be modi-
fied in both the HTML code and in the visual representation
of the page. However, more advanced edits such as Javascript
code do not work in this way.

Visual programming represents a nearly orthogonal approach
to our learning and use problems. It has had some suc-
cess in breaking programming barriers in CAD (e.g. Rhino’s
Grasshopper), particularly because of how its visual notation
‘speaks’ to CAD users who are mostly architects and engi-
neers with strong visual and spatial skills [5]. It also allows
a more direct manipulation of the program [6]. Although vi-
sual programming appears to be easier to use and understand



for designers, it suffers from some of the same problems as
textual programming, including the different notation it uses
(node-link) compared to the modeling notation and its lack
of direct manipulation of the model (direct manipulation only
happens on the nodes and links.) In addition, visual program-
ming implementations typically do not give designers all the
capabilities of scripting and thus limit design exploration [8].

Terry’s side views [21] present a preview of commands that
enables users to experiment without modifying the original
data and compare and contrast multiple states of the data dur-
ing alternative generation. He explores the effectiveness of
side views in text and image manipulation interfaces. While
valuable, more generalized versions of preview tools in CAD
scripting interfaces are largely absent in the field.

Together, the related work and our initial design studies (see
below) provide a backdrop for understanding why we have
designed particular features into PIM. It also illustrates how
some features that we have incorporated within PIM are be-
ginning to appear in other systems, albeit in a limited fashion.
Most importantly, what we do not see in the literature is a de-
tailed study that explores the variety of interaction techniques
that we have included in PIM, which have the potential to re-
duce the steep learning and use curve found with many CAD
systems. Thus, our study builds on the related work to pro-
vide a detailed user evaluation of a set of PIM features along
with an understanding of how these should best be integrated
within existing CAD systems.

PROGRAMMING IN THE MODEL
In this section we first discuss the goals and considerations
behind Programming In the Model, then introduce its fea-
tures in the context of a prototype we call PIM. The video
figure associated with this paper contains additional media
showcasing PIMs design.

Goals and design considerations
The goal of Programming in The Model (PIM) is to create
a more gentle slope system by breaking the barrier between
modelling and scripting into small steps and by situating these
within or relating them to the CAD GUI . It is important to
note that PIM is an interaction strategy, not a new program-
ming language. PIM offers ways to improve the scripting en-
vironments of existing CAD systems in relation to their mod-
eling interface. PIM’s goal is not to reach the perfect shallow
curve in Figure 1, labeled as Gentle Slope System. We accept
the level of difficulty of these scripting languages and only
claim to break the difficulty curve into smaller steps to make
it easier for end-user programmers to learn and use these lan-
guages (Figure 1). (For the same reason, our design for PIM
does not extend to the choice of programming language and
common IDE support tools, including syntax-directed edit-
ing, syntax error prevention, etc.)

Additionally, we hope to lower the perceived cost/benefit ra-
tio of scripting in PIM compared to traditional scripting lan-
guages, in order to encourage designers to use small pieces
of code more frequently, therefore making it more likely for
programming to become a tool in their design process.

Figure 1: Gentle slope systems

We developed PIM through an iterative design–prototyping–
evaluation process, starting in 2009. Early prototypes were
done within existing parametric tools and demonstrated at in-
dustry workshops such as Smartgeometry and to local domain
experts. These convinced us of a strategy that includes the
textual script as a representation equal to others (e.g., model
and dependency graph), rather than, for instance, building
a new visual metaphor for scripting. We heard, again and
again, that the script is the most powerful view to which peo-
ple would ultimately turn to solve hard problems and through
which people would advance to full programming environ-
ments such as Java or C#. Through these prototypes, we de-
veloped the following design considerations for the PIM envi-
ronment: (a) supporting direct manipulation of the model dur-
ing programming; (b) supporting users’ transition from mod-
eling notation to programming by strongly relating modeling
and coding acts; (c) enabling fine-grained and incremental
programming; and (d) predicting the effects of changes be-
fore committing to them. Maleki et. al. [16] published a full
description of PIM system features. The focus of this paper
is on presenting its evaluation.

PIM features
PIM is a 2-dimensional parametric CAD prototype with a
limited number of geometric objects (coordinate systems,
points, lines, and vectors). PIM’s interface consists of a mod-
eling window that shows the 2D model, a graph window that
displays the parametric structure of the model in a node-link
diagram, a script window, and a number of tabs that house
non-geometric components of the design. The goal of creat-
ing the prototype was not to make a new, independent CAD
system, but to have a platform to implement and demonstrate
our ideas in a realistic setting. We implemented a subset of
all desired PIM features in the working prototype. We pro-
duced a video demo of PIM, which along with the prototype,
presents a complete picture of PIM features for the user study.

Unlike most CAD systems that block access to the model dur-
ing scripting, PIM keeps active all representations of the de-
sign side-by-side, including the model view, the dependency
graph, and the script window. Further, aspects of one view
can be shown and edited directly in others. All views are
concurrent and interactive, so the designer can equally access



the model and the graph during scripting. To help naviga-
tion through these representations, PIM offers brushing and
highlighting of the data in the script, graph and model (Fig-
ure 2). Holding the mouse over a line of script highlights
the text, the object(s) the line describes in the model, and the
node(s) representing them in the graph. The live interface of
PIM gives the designers immediate feedback for their actions
in the script window by updating the model and graph concur-
rently with the script. Comparing to the blind working condi-
tions of traditional CAD scripting environments, realtime of
updating of the model allows the designers to see and evalu-
ate the effect of that action on the model right away without
having to leave the script window.

Figure 2: PIM is a live interface with all representations re-
flecting the action in realtime. Brushing and highlighting
brings the object into focus in all windows. Edits in any win-
dow are immediately reflected in all others.

Immediate feedback in PIM goes both ways (Figure 2). Ac-
tions performed by direct manipulation of the model, using
the CAD GUI, are reflected in the script concurrently. The
real-time script generation means that (1) users can learn
the syntax by observing the script that the system generates,
and (2) they can create code by modeling and the system will
translate their actions into code. The model-to-code liveness
can be confused with macros (as was by a study participant),
but there is a major difference. When a novice creates a
macro, the goal is not to do or learn programming. It is to
automate a repetitive task. If the user attempts to edit the
macro code, (s)he faces a piece of program in an unfamiliar
language with almost no legible mapping between the syntax
and the domain (for example Visual Basic for Applications
code and a Solidworks model). PIM’s bidirectional liveness
not only generates the code from the user’s modeling action
(as done in macros), but it presents this translation from one
notation to another to the user immediately. This changes the
way we write functions or any block of code in CAD. At any
time during this process, we can choose to work in the script,
the model or the graph and the other two representations are
updated in realtime.

Now these features help the designer when it is necessary to
work in the script. But switching back and forth between

these windows creates cognitive load for the designer and
takes away the focus from the model, where the design is
taking place. PIM’s approach is to localize access, that is,
access to all the information about the object in the model
view. For each object, there exists an expandable edit toolbar
that presents different types of data about it, including inputs,
replication [3], and an editable copy of the script that creates
that object (Figure 3). A user has the option to perform as
much of the task as possible in any one these representations.

(a) Edit toolbar (b) Expanded edit toolbar

(c) Script tab in the model

Figure 3: Localized information about an object appears next
to it in the model. This information may convey name and
type of the object, inputs, corresponding scripts, and depen-
dencies.

In most CAD systems, in order to explore the relationships
between an object and the rest of the model, the designer has
to highlight the object and find it in the graph, follow the
links and find what object(s) are upstream or downstream,
then highlight and find those objects back in the model. PIM
gives the designer the option to view these dependencies
in the model view (Figure 4). These links directly connect
model objects, not the nodes that represent those objects in
the graph, so it is easy to find out what object is upstream or
downstream of an object in the model. The graph window
still exists and helps to get a sense of the whole dependency
structure or to do more complex tasks.

In parametric modeling, sometimes the change we want to
make on an object must be applied several levels up in the
dependency tree, which makes it difficult to decide the action
that would produce the desired effect downstream. PIM of-
fers a feature called preview that, if turned on, gives the user
a lookahead into the state of the model, especially the objects
that are downstream of the object that is being changed (Fig-
ure 5). The user can choose to see as many levels downstream
as needed, evaluate the model and only confirm the edit when
the intended effect is achieved.

USER STUDY
In order to evaluate and improve PIM’s design, we conducted
a qualitative user study, with both HCI and domain experts



Figure 4: Dependencies in the model directly connect objects
with their upstream and downstream objects.

Figure 5: Preview in PIM displays the edit alongside the orig-
inal model and highlights all the objects that are affected by
the change.

as participants. The goal of the study was to qualitatively
assess different PIM features to understand how users interact
with them, which features create positive experiences, which
features are challenging to use, and, overall, which features
may benefit fully functional CAD systems.

Participants
All participants including the HCI experts had some experi-
ence with parametric CAD systems. They were chosen from
CAD users in academia and practice. They all had a design
background; had used a CAD graphical user interface as part
of their work; had some experience with a parametric CAD
system such as Solidworks, Grasshopper, Revit, Cinema 4D,
and Generative Components; and had experience with those
systems’ scripting interfaces. This was important for it meant
that our participants could compare the features within PIM
to the standard practices of existing CAD tools, as well as
imagine how the PIM features may work in such tools if avail-
able. Thus, our participant selection provided a means for us
to receive valuable critiques of our design choices and direc-
tions for future development. We recruited participants until

we reached data saturation: that is when we were not ob-
serving or hearing anything new. There were 8 male and 4
female participants, all adults over the age of 18. They were
recruited through direct email, social media such as LinkedIn
and Facebook, and verbal requests. Participants received a
small reward (in the form of a gift card) for their time.

Procedure
Before each session, participants read and signed an informed
consent form and filled in a pre-session questionnaire about
the their age, gender, and prior experience with parametric
CAD and computer programming. Each session had four
parts.

1. In the first part, the researcher gave a quick demo of
PIM and introduced its basic functionalities to the participant.
Then the participant took over and performed small tasks de-
signed to familiarize them with the new interface.

2. and 3. In the second and third parts, the researcher gave
demos of more advanced features of PIM, including scripting
and dependencies, and the participant performed four tasks
in each part that used those features. A short video demo
was shown at the end of Parts 2 and 3 that covered future
PIM features not yet implemented in the prototype. The tasks
were similar to common parametric modeling tasks and were
chosen so that the user had a chance to examine all available
features of the system, but were simplified to accommodate
the study time and PIM’s current limitations. Tasks involved
creating new geometric objects, editing existing objects, and
identifying and manipulating relationship between objects,
all in the model window, in the script window, or both. The
following two tasks are representative of the broader tasks set:

Part 2, Task 1: “Identify the left most coordinate system in the
model, find its syntax in the script window, and change its Y
input to 50 in the script.”

Part 3, Task 3: “Using the dependency links, can you tell what
objects will be affected if you edit the vector called vect01,
without actually editing it?”

During Parts 1 to 3, participants were asked to think aloud and
tell us what they were doing, why they were doing it, and dif-
ficulties and uncertainties they encountered. We encouraged
participants to ask questions and told them that they were not
being tested for their skills or speed with which they learned
the features and performed the tasks.

4. After Parts 1 to 3, participants engaged in an open-ended
interview with the researcher about PIM features in general
and in relation to their work. The researcher asked questions
about different PIM features and discussed any unusual or
interesting event that happened during the tasks. Through-
out the study, our focus was on PIM features and how they
affected the participants’ experience with the system as op-
posed to common usability concerns.

Overall, each study session took about two hours, with a total
of 10 minutes for introduction and background questionnaire,
20 minutes in total for demos (live and video) split in three



parts, 60 minutes for tasks split in three parts, and 30 minutes
for a closing interview.

Study method rationale
The target users of CAD scripting environments are typically
intermediate and expert users of the system who want to ex-
tend the capabilities of the system and customize it through
scripting [9]. Because PIM is a new system, there are no
users who are experts with it. As a result, all of our partic-
ipants started out as PIM novices. In order to scaffold par-
ticipants in to users that could be considered intermediate or
expert users of the system, more in line with typical users
of CAD systems, we gave them short demonstrations of the
functionality in the PIM system. We divided the demonstra-
tion into three separate parts followed by relevant tasks, in
order to keep the users engaged and avoid losing their in-
terest and attention, which might be the case with a single
long demonstration. An alternative approach of letting users
build up their expertise and understanding on their own with-
out demonstrations would have been largely impractical in a
study situation; building up one’s expertise in a system like
PIM could easily take days or weeks.

Our study was purposely qualitative and observational in na-
ture because we wanted to explore how users interacted with
features within PIM and what they thought of the features.
We were interested (dis)confirming the features and their rela-
tive perceived importance in order to refine and develop PIM.
Thus, we were not interested in task performance, completion
times, and counts of user errors that one might quantitatively
assess. Instead, we wanted detailed observations and thick
descriptions that come from an exploratory qualitative study
where we were able to observe users’ reactions to PIM fea-
tures, as well as ask HCI experts to evaluate the usability of
these ideas. We also purposefully did not conduct a com-
parative study with PIM against other CAD systems. PIM is
a prototype system and not a fully functional CAD system;
thus, such a comparison study would have generated an ‘ap-
ples to oranges’ comparison.

Data collection and analysis
The sessions were voice recorded with participants’ permis-
sion. During the tasks they performed with the prototype, the
computer screen was recorded using software for future anal-
ysis of users’ actions. The researcher(s) observed the ses-
sions and took notes. The data that we collected in the study
included a written pre-task background questionnaire, audio
(voice) / video (screen capture) files of the demo/task, an au-
dio file of the post-task open ended interview (discussion).
We used NVivo10 software to sort, transcribe, and analyze
the data. In the first round of data analysis, we used open,
axial, and selective coding from grounded theory. With no
predefined codes, we went over the data and let it speak to us.
Categorizing codes were quickly formed, including partici-
pant classifications, nature of the data (statement or event),
type of data (positive, neutral, negative), and PIM feature(s)
to which it relates.

We tagged all statements spoken by the participants and ev-
ery event we observed during the tasks as positive, negative

or neutral. A positive tag indicates a statement that showed
a positive emotion toward a PIM feature, for example “It
is very helpful that I can see the object highlighted in the
model.”. A negative tag indicates an event that showed a
problem or challenge, for example when the participant failed
to identify the right object in the model, or a statement with
negative emotion such as “I am not so sure that preview will
work well in the large models that I work with.” Events and
statements that were neither positive nor negative were tagged
as neutral.

RESULTS
After studying the codes that had emerged in the analysis,
we grouped them into higher level themes. These themes
describe the reactions that participants had to PIM’s design
features (both positive and negative). We explain them in de-
tail under the headings of search-navigation, learning, fear of
code, mental model, errors, trial and error, and complexity.

Search-navigation
One of the barriers that resonated with the participants was
navigating through the information presented in the script and
graph and connecting it with the model that they were de-
signing. Brushing and highlighting was used widely by the
participants to search and navigate within each window and
also across multiple windows, especially to locate the object
of interest in the script when it was known to them in the
model. Participants acknowledged the benefits of instanta-
neous brushing between the model, the graph, and especially
the script window, something that they had not seen in any
other CAD system. Of course, highlighting works because of
the liveness of the interface. One participant mentioned her
past experience, trying to find things:

“It is an interesting search method, comparing to what I use
in GenerativeComponents in a huge model. To find some-
thing, I had to search and type it in and find it. But here I can
just go over it and it highlights. It makes it easy.” (P2)

Sometimes the thing that needed to be found was not an ob-
ject, but a relationship. For example, the user wanted to know
which coordinate system a particular object was in. Display-
ing dependencies in the model helped the users find that infor-
mation easily without having to leave the model and go to the
graph, follow the relationships, find the coordinate system,
then find it back in the model. One participant explained:

“[Displaying dependencies in the model] is useful for sure.
Just because you don’t have to look from [model] object to
node, [node] to node, back to object. It’s direct.” (P6)

As one might expect, dependencies were not always under-
standable by users. At times links showing the dependencies
were obscured by model objects. In these cases, participants
did not see the links and missed the connections between ob-
jects.

Learning
Participants found scripting in PIM was easier to learn than
in other CAD systems. This was evident to them and to us
after the first few scripting tasks that they performed using the



prototype. Some participants did not even wait for us to show
them how to use the system. Instead, they intuitively started
playing around with the script. By looking at the data we can
see that the feature that related the most to learning was the
liveness, especially the model to script liveness (or auto script
generation). One participant observed how the code reflected
the action of creating a vector in the model:

“The name of the object is what immediately gets my atten-
tion, because it’s been repeated in the code. ... Then the
argument point10[0] is repeated in the script. That’s perfect
that it shows up in both places.” (P3)

He then emphasized the importance of extreme liveness or
liveness to the smallest action possible in how the users con-
nected the two representations:

“I think if they type everything in the edit toolbar and enter
and all of a sudden a line of code appears with all the ar-
guments, that short lapse of time is enough for them to lose
the connection. But the fact that they are inputting the val-
ues and the window is still open and the inputs update in the
script, makes a huge difference. ... You are in the middle of
the task and you are seeing the code in realtime, it gives you
the opportunity to consider what you are doing in code form.”
(P3)

Participants also commented on how they learned from ex-
amples and how, in PIM, they were able to learn from the ex-
amples of their own modeling work. One participant said that
the liveness of PIM is revealing, in the sense that it shows the
users that what they do during modeling is not much different
from what they would do during scripting.

“They start to get a sense of functions and relationships...
just by manipulating geometry the way they already are. By
having [the script] construct itself while they are modeling,
they realize that those are the relationships they are making,
but they never think of it that way. This is revealing.” (P6)

A challenge that PIM did not manage to overcome was one
particular participant who even after performing the tasks and
working with the system still believed that scripting was not
a necessary tool in design. In fact, he was opposed to it as a
design tool. This shows that PIM is only beneficial for users
who are willing to start programming in the first place.

Fear of code
Most of the participants stated that PIM’s live scripting was
would help reduce the general fear of code among designers.
They referred to the traditional script window as ‘black box’
and the code as ‘nuclear physics’ to describe how unfamiliar
and scary it seemed to non-programmers.

“If they always see the script updated as they work, they’ll
start to pick things up. Most of the designers I work with
don’t script. So when I say to them that we can write a couple
of lines of code to do this easier, it’s like a black box for them,
like you are talking nuclear physics! So this ... would open
the minds of the designers who just don’t want to go there,
because they are afraid of what they don’t know.” (P4)

Another participant pointed out that by having the script win-
dow open all the time and update continuously, users saw that
the script window does the same thing as the model window:

“People say ‘I know it makes my work easier, but I don’t want
to go into the black box and learn it.’ But if they see that it’s
not that bad. You are already drawing lines all day and you
can see that one line in the model is one line in the script. So
you’ll start to see how simple it is to input a few things.” (P4)

Mental model
Scripting in CAD does not provide a close mapping between
the domain world and the computer world. One is the world
of shapes and forms and the other comprises syntax and al-
gorithms. We received many positive comments about the
difference between modeling, dataflow and scripting in terms
of the users’ mental model.

“Graph nodes and script lines are too abstract for designers
and may not even mean anything. But as soon as they connect
them with the model, it makes sense and things start to have
meaning. The model makes the code more legible, and the
model and the code together make the graph more legible.
Scripting on its own is pretty bad. No one can figure out the
structure of the system from code alone. But as soon as you
add the model and graph, they think that the code is not really
that bad. The first thing they need to do is to see all three
together, then start from the one that is most familiar to them,
which for most designers is the model.” (P3)

Participants noticed that PIM’s side-by-side windows helped
them connect the abstract script to the more concrete model:

“You are taking two tools or two modes of description that
are usually separate and putting them together. In this inter-
face, this [scripting] becomes a lot like drawing and drawing
becomes like scripting. And people from each camp can see
the value of the other form.” (P6)

While trying to create a vector in the script, one participant
suddenly noticed that the model was reflecting his moves in
the script. He then talked aloud and said that had he paid
attention to the model and not just the script, he would have
realized that it was much easier than coding alone.

One participant who identified himself as a visual person, still
did not understand the value of scripting, but was thrilled to
have access to the script in the model:

“Just to be able to work directly on the model sounds so much
better to me than anything to do with the script. ... It’s so
much easier for me to think in the model or graph view... . I
think the main reason is that usually script is very far away
from the model. ... being able to do it directly here in the
model is something I like. I appreciate that you can also do
it here [script]. But initially having everything work here [in
the model] makes much more sense to me.” (P7)

Two participants were completely opposed to scripting as a
way of modeling and were not convinced that PIM could help
with that. They criticized the use of syntax as what they called
machine language and called for other ways of communicat-
ing with the system that were closer to the natural language.



Error prevention/detection
The immediate feedback that users received in the model for
scripting actions, allowed for quick evaluation of the results,
detection of errors on the spot, and fixing them before moving
on to the next tasks. Participants acknowledged this and com-
pared it to traditional scripting when feedback is only avail-
able after compiling a body of code.

“The feedback level allows a lot of close control. So you make
specific decision as you go along, as opposed to writing a few
lines of code and expecting a result, then having to back track
to see what went wrong. This is very helpful.” (P8)

Highlighting and brushing was also said to draw attention to
the feedback that the system was giving them in all three win-
dows in the interface. They also pointed out the effect it could
have on non-programmers’ experience with scripting when
errors were easy to detect and fix.

“Errors are what makes programming scary for non-
programmers. Because this is live, you write a little bit of
code and you see the result. So it means that if there is an
error, you can trace it back.” (P11)

On the other hand, and to our disappointment, PIM caused
some errors during the tasks. One particular type of error was
in identifying relationship between objects. A few of the par-
ticipants got confused with the dependency links in the model
and made mistakes following them to the upstream or down-
stream objects. Another challenge they faced was connecting
the edit toolbars to their corresponding model object, espe-
cially when they moved the toolbar away from the model.
Both problems seem to be more about usability than concept
and we believe there are simple ways to address them.

Trial and error/ Design exploration
The lookahead feature in PIM was a new tool for the partic-
ipants that helped them explore scenarios quickly and revert
back to the original state if necessary. Some raised the ques-
tion of previewing large models, which we return to when
we talk about complexity. Others asked whether the preview
state can be saved as an iteration or alternative.

“Does it save that history? Does it revert back to its original
location if I want to undo? I guess it’s more history than undo.
I may want to keep the information there, like a button in grey
that keeps the information about what’s been done recently,
like steps that I can go back in time.” (P10)

Preview at this stage is a means to evaluate how the model
will be affected by the action that is being performed, es-
pecially in the script, rather than a history of users’ actions.
They also requested more selective preview, not only select-
ing downstream levels, but also selecting one or more objects
in the model and previewing those only.

Complexity/ scalability
A large number of participants felt that, while PIM worked
well for simple models, it would face challenges when models
grew complex. Thus, they felt it would have issues ‘scaling
up.’ For example, they did not feel it would work well if the
model became ‘too heavy’ for the machine, if there were too

many objects on the screen, if there was not enough screen
real estate for all the visual elements of PIM to be display, or
if the model was three-dimensional model.

“I think the dependencies can be a little confusing with the
links. Here you are looking at a very simple line and point
model, but if you have a complex 3D volume and one compo-
nent may affect all of these components.” (P4)

They also questioned us on how we would handle certain as-
pects of the features in real model, for example, which object
will carry a script in the script tab when it defines multiple ob-
jects, or how we would highlight an object in the script when
it appears in multiple places.

“It gets tricky once the code [in script tab] represents multiple
objects. which object do you tag that to? When it’s property
of an object, it makes sense to attach it to that object. But
when it deals with relationship between a, b, and c, then it
makes more sense to put it in the script window.” (P6)

On the other hand, they foresaw how some of these features
could assist them in complex models. Highlighting and dis-
playing dependencies in the model could help when the graph
gets too visually cluttered and/or unorganized.

“With PIM, I don’t have to be so concerned with how I orga-
nize the graph, because I know I can find what I want later, in
a more intelligent way. For example, by using dependencies, I
can find and focus on the objects and nodes that are impacted.
That matters to me, because I make very large graphs. What
this does is highlighting and drawing my attention to what
matters and what I am working on.” (P3)

Usability issues
We took note of the usability issues when they were observed
in the tasks or noted by participants. These arose from our
interface design choices and development limitations. The
most important usability issues for us were the ones that af-
fected PIM features and how they were perceived by users,
among those was the representation of dependency links in
the model. We chose a node-link design for displaying de-
pendencies as is common in the graph. However, the links did
not work well with the two-dimensional model and caused re-
duced visibility of both links and model objects. This resulted
in participants missing dependency data that was presented to
them in the model and became even more pronounced be-
cause the graph window was not implemented in the proto-
type. In other words, participants liked the fact that depen-
dency data was available directly in the model, but did not
benefit from it during the tasks because of what we believe to
be our choice of visual representation.

A related problem happened with edit toolbars in the model.
Some of the participants were confused or annoyed by the fact
that sometimes links were hidden under tool bars. In these
cases, they moved toolbars around until they found a place
where links and toolbars were more organized and overlap-
ping did not occur. However, as soon as they opened new
toolbars or displayed more links, the same problem reoc-
curred. Thus, floating toolbars and a large amount of links
within the interface was clearly a design issue.



Smaller usability related comments included requests for slid-
ers for numeric inputs, for more support in the script (syntax-
directed editing), and for more data in the edit toolbar (such
as type and update method). We tried to incorporate these
suggestions and requests that we deemed effective in improv-
ing the usability of the prototype. Other issues remain unre-
solved, pending more investigation and redesign.

DISCUSSION AND CONCLUSIONS
In this section, we discuss our findings for PIM features and
their implications for the Computer-Aided Design field. We
focus our discussion around the three main components of
Programming in the Model: liveness, localization of infor-
mation, and lookahead (preview).

Liveness: As the most notable feature of PIM, liveness ap-
peared to have a positive impact on users’ experience by cre-
ating a mapping between the code and the geometry. Partic-
ipants in our study were able to easily connect the abstract
entities of the script and concrete objects in the model to cre-
ate a more clear mental model of the scripting language and
how it worked. This was because the system was ‘live’ and
highly interactive. For designers who were fearful of pro-
gramming and hesitant to try it, this simple side-by-side rep-
resentation brought with it a familiarity with the code and
reduced the perceived difficulty of scripting. Given this, we
feel the first step in breaking the barriers to scripting in CAD,
is to include liveness features such as those we implemented
in PIM. We also note that, as one participant put it, the im-
portant aspect of liveness is in its timing: the mapping is only
effective if it is immediate. Thus, the goal is to have imme-
diate liveness, meaning that all representations must update
concurrently with each action without delay. Participants en-
couraged us to aim for extreme liveness: liveness that includes
and shows even the smallest steps of an action. Overall, this
appears to be crucial for users to create effective mental con-
nections between the code and the model.

Localization: Superimposing information onto the model
view, including object properties, dependencies, and code,
was found to be both beneficial and problematic. On one
hand, it supports the user in building mental models and in
viewing and manipulating the data related to objects locally
in the model, where their focus of attention mostly lies. By
doing so, the system eliminates the need for the user to switch
to other representations to access the data. A strong bene-
fit is that localization of specific aspects, for example, lines
of script, appears to aid model comprehension and learning
about scripting. On the other hand, the design of such an
interface becomes very challenging. One of the challenges
is maintaining the visibility of the model itself and avoiding
obscuring it with these additional visual elements. Our at-
tempts at preventing clutter in the model view by only dis-
playing non-model elements selectively and temporarily and
in a semi-transparent form turned out to be unsuccessful (or
at least not enough), as was obvious in the study. Failing
to follow dependency links in the model and identify rela-
tionships, being frustrated by toolbars and windows covering
model objects and constantly moving them around, and los-
ing connection between objects and their respective data were

signs that the interface had failed to achieve its goal. These
design issues seemed to be the reason for issues in search and
navigation and user forecasts of scaling problems.

Lookahead (Preview): As a design exploration tool, looka-
head was not very successful. Instead of seeing the purple
preview model as an alternate state, participants paid more
attention to what objects in the model or lines of code in the
syntax were purple. In other words, they used preview to see
what was being affected by their action. This has always been
a secondary goal of preview, but after seeing the results of
the study we now lean more toward recommending preview
as a debugging and error prevention tool in CAD systems.
Preview has the potential to support scripting by highlight-
ing side-effects and preventing errors and unintended results.
This is especially important in parametric modeling where
objects are related to other objects and hidden dependencies
can become problematic, particularly in complex models.

Another challenge was related to scale. It is well-known that
visual programming languages do not ‘scale up’ without los-
ing visibility. What we did was to put part of the visual
dataflow on top of the model, which, on one hand, reduced
the scalability of the interface as it inherits the visual pro-
gramming problem in general. On the other hand, localizing
only the desired parts of the dataflow reduced user references
to the overall dependency model and may actually increase
the scale at which dependency information is useful. Future
attempts at localization of information on the CAD models
must be carefully designed to handle complexity of current
CAD models and tested to ensure scalability.

Programming In the Model research attempts to move CAD
systems towards more usable and learnable scripting environ-
ments. Many attempts have been made to develop easier and
more natural programming languages. But, in the CAD do-
main, there is the potential to use the modeling interface it-
self as one of the primary interactors with code, and to en-
able more concrete mental models of the abstract concepts
of the script. Our preliminary observations reveal that multi-
directional liveness shows real promise in delivering this goal.
The implication is that commercially-available CAD systems
should strongly consider incorporating immediate liveness,
if not what we term ‘extreme liveness,’ into their interfaces.
From a designer’s perspective, liveness reduces the distance
between design work and the code that is now a necessary
part of that work. It should enable better understanding of
the parametric design media and thus improved model qual-
ity. From a CAD vendor’s perspective, liveness is a strategic
advantage. The recent history of parametric CAD (at least
in building design) can be told as a tale of improving inter-
faces to the parametric engine, largely through interactions
with the dataflow graph. Together, liveness, localization and
lookahead open new opportunities for improved (and more
competitive) system designs. The difficulty of making such
changes will depend on each vendor’s code base. However,
systems such as Dynamo (Autodesk), Grasshopper (Rhino)
and GenerativeComponents (Bentley) are all increasing the
richness of interaction with their diverse models, for which
liveness sets an ambitious but reachable goal. At this stage of



our research, we are very convinced that liveness is a crucial
goal. Other PIM strategies such as localization of data in the
model view and previewing the changed model show promise
but need more research and careful redesign if they are to be
incorporated in commercial CAD systems.

Based on the results of this study, we plan to redesign some
of the features such as dependency links and implement the
dependency graph window. In addition, we need to push the
implementation forward in a way that allows us to conduct
studies with more complex tasks and comparative conditions
(PIM with and without each feature). Additional features may
be discovered and added to the system as well. This iterative
process of design, implementation, and evaluation will give
us more detailed feedback about these features, therefore en-
abling us to make recommendations for incorporating these
features in commercial CAD systems.

ACKNOWLEDGMENTS
This project was partially supported by the NSERC Discov-
ery, Postgraduate Scholarships, and Collaborative Research
and Development programs; by MITACS Accelerate and by
the GRAND Networks of Centres of Excellence.

REFERENCES
1. Aish, R. Extensible computational design tools for

exploratory architecture. In Architecture in the digital
age : design and manufacturing. Spon Press, New York,
NY, 2003.

2. Aish, R. Designscript: Origins, explanation, illustration.
In Computational Design Modelling, C. Gengnagel,
A. Kilian, N. Palz, and F. Scheurer, Eds. Springer Berlin
Heidelberg, Jan. 2012, 1–8.

3. Aish, R., and Woodbury, R. Multi-level interaction in
parametric design. In SmartGraphics, 5th Intl. Symp.,
SG2005, A. Butz, B. Fisher, A. Krüger, and P. Oliver,
Eds., LNCS 3638, Springer (Frauenwörth Cloister,
Germany, August 2005), 151–162.

4. Blackwell, A. First steps in programming: a rationale for
attention investment models. In Proceedings IEEE 2002
Symposia on Human Centric Computing Languages and
Environments (Arlington, VA, USA, 2002), 2–10.

5. Boeykens, S., and Neuckermans, H. Visual
programming in architecture. Joining languages,
cultures and visions (2009).

6. Burnett, M. M. Visual programming. In Wiley
Encyclopedia of Electrical and Electronics Engineering.
John Wiley & Sons, Inc., 1999.

7. Burnett, M. M., and Scaffidi, C. End-user development.
In Encyclopedia of Human-Computer Interaction,
M. Soegaard and R. F. Dam, Eds. The
Interaction-Design.org Foundation, 2011.

8. Celani, G., and Vaz, C. CAD scripting and visual
programming languages for implementing
computational design concepts: A comparison from a
pedagogical point of view. International Journal of
Architectural Computing 10, 1 (2012), 121–138.

9. Cooper, A., Reimann, R., Cronin, D., and Cooper, A.
About Face 3: the essentials of interaction design. Wiley
Pub., Indianapolis, IN, 2007.

10. Dertouzos, M. ISAT Summer Study: Gentle Slope
Systems; making computers easier to use. Presented at
Woods Hole, MA, 16 August 1992.

11. Hutchins, E. L., Hollan, J. D., and Norman, D. A. Direct
manipulation interfaces. Human-Computer Interaction
1, 4 (1985), 311.

12. Jabi, W. Parametric Design in Architecture. Laurence
King Publishing, 2012.

13. KhanAcademy. Khan academy computer science,
September 2012. Accessed on 11/04/2013 at
http://www.khanacademy.org/cs/new.

14. Ko, A., Myers, B., and Aung, H. H. Six learning barriers
in end-user programming systems. In Visual Languages
and Human Centric Computing, 2004 IEEE Symposium
on (2004), 199–206.

15. Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M. B., Rothermel,
G., Shaw, M., and Wiedenbeck, S. The state of the art in
end-user software engineering. ACM Comput. Surv. 43,
3 (Apr. 2011), 21:121:44.

16. Maleki, M., and Woodbury, R. Programming in the
model – a new scripting interface for parametric CAD
systems. In Proceedings of the 33rd Annual Conference
of the Association for Computer Aided Design in
Architecture, ACADIA (Cambridge Ont., 2013),
191–198.

17. Myers, B. A., Smith, D. C., and Horn, B. Report of the
end-user programming working group. In Languages for
Developing User Interfaces, B. A. Myers, Ed. A. K.
Peters, Ltd., Natick, MA, USA, 1992, 343–366.

18. Peters, B., and Peters, T., Eds. Inside Smartgeometry.
John Wiley & Sons, 2013.

19. Senske, N. Fear of code: An approach to integrating
computation with architectural design. Thesis,
Massachusetts Institute of Technology, May 2005.

20. Shneiderman, B. Direct manipulation: A step beyond
programming languages. Computer 16, 8 (1983), 57–69.

21. Terry, M., and Mynatt, E. D. Side views: persistent,
on-demand previews for open-ended tasks. In
Proceedings of the 15th annual ACM symposium on
User interface software and technology, UIST ’02,
ACM (New York, NY, USA, 2002), 71– 80.

22. Victor, B. Inventing on principle, 2012. Accessed on
11/04/2013 at
http://worrydream.com/#!/InventingOnPrinciple.

23. Victor, B. Learnable programming, Sept. 2012.
Accessed on 11/04/2013 at
http://worrydream.com/#!/LearnableProgramming.

24. Woodbury, R. Elements of Parametric Design. Taylor
and Francis, July 2010.


	Introduction
	Background and related work
	Programming In the Model
	Goals and design considerations
	PIM features

	User study
	Participants
	Procedure
	Study method rationale
	Data collection and analysis

	Results
	Search-navigation 
	Learning 
	Fear of code 
	Mental model 
	Error prevention/detection 
	Trial and error/ Design exploration 
	Complexity/ scalability 
	Usability issues

	Discussion and conclusions
	Acknowledgments
	REFERENCES 

