
 Neustaedter, 2002

- 1 -

An Evaluation of Optical Flow using Lucas and Kanade’s
Algorithm

Carman Neustaedter

University of Calgary
Department of Computer Science
Calgary, AB, T2N 1N4 Canada

+1 403 210-9507
carman@cpsc.ucalgary.ca

ABSTRACT
Video offers distance-separated co-workers with a rich
awareness of who is available for conversation or
collaboration. By broadcasting video, however, the privacy
of individuals becomes threatened because others now see
potentially sensitive information. This risk is heightened
for telecommuters who use video to connect to a remote
office from home. Blurring video is one technique that has
previously been studied to help preserve privacy. Most
blurring techniques blur the entire video, however, it is
desirable to be able to blur regions of the video differently
if multiple people are present. Optical flow can be used in
this situation to distinguish which regions contain different
people by their level of activity. This paper evaluates an
implementation of Lucas and Kanade’s algorithm for
computing optical flow and discusses possible applications
for it in videoconferencing that is sensitive to privacy
issues. The implementation is found to compute accurate
optical flow for small pixel displacements, yet real-time
computation is only possible for small frame sizes.

Keywords. Optical flow, Lucas and Kanade, video
conferencing, motion, privacy.

INTRODUCTION
Everyday communication and interaction between co-
workers is held together by an awareness of those who are
around and available [2,5,9]. Awareness helps people
decide if and when to smoothly move into and out of
conversation or collaboration. This awareness is easily and
naturally gained by those located in close physical
proximity [7,16]. People can see if another is busy by
simply glancing in their office or cubicle. As people
become spread over distance, however, this awareness
becomes difficult to gain unless technology is present
[7,10].

Video is capable of providing rich awareness over
distance and has been suggested by many researchers as a
technology capable of mediating communication [2,4-
8,11,14,15,17]. As video broadcasts information about
one’s awareness, such as a user’s current activity and level
of availability, it may be presenting information at an
undesirable level and threatening the user’s privacy
however. The user’s privacy could be violated just as
easily though if no awareness information is presented

because a co-worker could interrupt at an inappropriate
time.

Telecommuters who work from home and connect to a
remote office using video face increased privacy threats, as
homes are inherently private in nature. Video links place
telecommuters in two different environments where there is
a disparity between levels of appropriateness. For example,
working without a shirt on may be quite appropriate for
those working at home, but the same level of undress is not
appropriate for an office environment. Video attempts to
place the telecommuter under the appropriateness
constraints of both locations. To further complicate the
situation, others present in the home, such as family
members who gain no benefit from the video link still incur
the privacy threat.

Blur filtration is one technique that has been studied to
mask sensitive details in video that may be considered
threatening to one’s privacy [5,17], such as a person’s
activity, a person’s appearance, or the location and its
appearance. Most filtration techniques are only capable of
masking the entire video sequence an equal amount. In
cases where multiple people are present within a home
there exists a desire to be able to blur regions of the video
differently for each person. Some people, such as the
telecommuter working, may be appropriate to broadcast at
full fidelity while someone walking into the room in
varying levels of undress may not be. The person working
could be blurred less than the person walking into the
room. For such situations, being able to distinguish
between a high level of activity and a low level of activity
would be desirable. Areas of high activity, such as a
secondary person walking into a room could be blurred
more than a region containing someone working.

Optical flow algorithms show potential in this area
because they are able to compute motion between frames of
video. The optical flow that is computed for each pixel in a
frame could be used to determine which regions of the
video frame contain large amounts of flow or motion.
These regions could then be treated accordingly for their
suspected level of privacy threat. Many optical flow
algorithms are quite computationally expensive, however,
and not suitable for use while transmitting video to others.
Lucas and Kanade [13] present a differentiation method for
computing optical flow that has shown computational

 Neustaedter, 2002

- 2 -

potential in various implementations by other researchers
[1,12].

This paper discusses an implementation of the Lucas
and Kanade algorithm for computing optical flow and its
application to privacy preservation techniques for
mediating privacy when video is used in homes. The
implementation is evaluated based on its accuracy in
computing flow and distinguishing levels of high activity
from levels of low activity. The computation performance
of the implementation is also analyzed for various frame
sizes.
RELATED WORK
The algorithm presented by Lucas and Kanade [13] is an
image registration technique that can be used to compute
optical flow. Image registration techniques attempt to find
an optimal value for a disparity vector, h, which represents
an object’s displacement between successive images.
Methods to find the disparity vector prior to Lucas and
Kanade relied on computationally expensive or non-
optimal techniques. One such method performs an
exhaustive search for h that examines all possible values
for the disparity vector [13]. An alternative strategy is
found in hill-climbing techniques that evaluate difference
functions at all points in a region, choosing the point that
minimizes the difference [13]. Hill-climbing techniques
can lead to false peaks that produce local, rather than
global, optimums for h however. A third technique,
sequential similarity detection, computes an error value for
each possible disparity vector and then applies a method
similar to alpha-beta pruning in min-max trees, where
disparity vectors with large error values are eliminated
[13].

Lucas and Kanade’s algorithm [13] presents an image
registration method that examines fewer possible values of
h than previous algorithms to improve computation
performance. An initial estimate of h is made and then
iteratively updated based on the average spatial intensity
gradient found at each point within a fixed sized window.
The contribution of each gradient to the value of h is
weighted based on an estimate of the gradient’s error.
Iteration ceases after a specified length of time or when h
converges. Smoothing an image is shown to help improve
convergence, but can cause greater errors if an object is
suppressed entirely [13]. It is assumed in the algorithm that
pixels from the image are moving at a constant velocity and
corresponding pixels in the images fall within a fixed sized
window. An implemented version of Lucas and Kanade’s
algorithm is described in Barron, Fleet, and Beauchemin
[1].

Lim and Gamal [12] use a modified version of Lucas
and Kanade’s algorithm that utilizes advancements in
CMOS image sensor technology to compute more accurate
optical flow measurements using high frame rates. Their
technique first computes an optical flow estimate between
two frames at high frame rates using the Lucas and Kanade
method. Next, the optical flow is computed from the
successive images at standard frame rates. This new value
is combined with the initial estimate to create a final flow
value. Lim and Gamal conclude that by using high frame
rate sequences they are able to handle pixel displacements
of up to 10 pixels/frame at 30 frames/sec, which is much
higher than the reported 1-2 pixels/frame displacement
capabilities of the original Lucas and Kanade algorithm.
IMPLEMENTATION
The Lucas and Kanade algorithm as described by Barron et
al. [1] follows four main steps to compute optical flow for
each frame in a video sequence. Frames are first smoothed
with a spatiotemporal filter to reduce errors in gradient
estimation (Figure 2). Next, gradients are estimated in x, y,
and t (time) for each pixel in the current frame. Gradients
are then smoothed and placed in a linear system (Figure 1).
Finally, the linear system is solved for the two velocity
components, u and v. This section describes the
implementation used and discusses areas where deviations
from other implementations were made.

Spatiotemporal Smoothing. Each frame must be smoothed
to reduce errors that may be produced during
differentiation. Smoothing first occurs spatially where a 1d
filter is used to convolve the image first in x and then y,
similar to standard image smoothing techniques. To
smooth temporally, Barron et al. [1] suggest using a
Gaussian filter with standard deviation of 1.5 pixels-
frames. This requires the storage of a large set of frames
for smoothing and delays the algorithm’s flow output,
which is undesired if the implementation is to be used in
broadcasting video over the Internet. To alleviate this
problem, my implementation uses a simple two-frame
weighted average. The current pixel’s value is averaged
with the pixel from the same location in the previous frame,
where α gives more weight to the value of the current

Figure 2: A video frame (left) compared to its smoothed
version (right).

E(t = n) = (1-�) E(n-1) + � E(n)
� = 0.75

Figure 3: The formula for temporally smoothing the value,
E, of a pixel.

� wIx
2 � wIxIy

� wIy
2� wIxIy

���
� wIxIt

� wIyIt

U

V

� wIx
2 � wIxIy

� wIy
2� wIxIy

���
� wIxIt

� wIyIt

U

V

Figure 1: The linear equation used for computing the
optical flow components, u and v

 Neustaedter, 2002

- 3 -

frame’s pixel (Figure 3). A sample frame and its smoothed
frame are shown in Figure 2.

Estimating the Gradients. Each frame is convolved in x, y,
and t with a 1 x 5 kernel to compute Ix, Iy, and It, for each
pixel. The kernel used in the implementation is shown in
figures 4 and 5 along with calculations of Ix and Iy using a
sample set of image values. The same kernel is used by
Barron et. al [1]. Gradients in x and y can be computed
within the current frame, however It must be computed
using a set of five frames – the current frame, two previous
frames, and two subsequent frames – as shown in figure 6.
The five-frame window needed for It causes output to be

delayed by two frames, but for video conferencing this
would be seemingly unnoticeable at standard video frame
rates. As well, for the first two frames and the last two
frames in a frame sequence optical flow is not computable
because a five-frame window is not available. Next, Ix, Iy,
and It are used to calculate Ix

2, Iy
2, IxIy,, IxIt,, and IyIt,.

Gradient Smoothing. Gradients are now smoothed for each
pixel in the frame within a 5 x 5 window using a 5 x 5
kernel. The kernel used, as suggested by Barron et. al [1],
is shown in figure 7 along with a sample smoothing
calculation for Ix

2. The kernel gives greater weight to
gradients near the center of the 5 x 5 window.

Solving the Linear System. A linear system is constructed,
as shown in figure 1, to contain all gradient information.
Next, the 2 x 2 matrix containing gradient information for x
and y (Figure 1) can be solved by first creating the
quadratic equation shown in steps 1-3 of figure 8. This
equation can then be solved for its two eigenvalues, �

1
 and

�
2, using the quadratic formula shown in figure 9. Once the

eigenvalues are found, they are compared to a threshold,
�=1, and will fall into one of three cases:

Case 1: �

1 � � and �
2 � �

• A is invertible and the system can be solved for
the two velocity components, u and v using
elementary linear algebra.

Case 2: �
1 � � and �

2 < �

• A is singular and therefore non-invertible; the
gradient flow is then normalized to give u and v.

Case 3: �
1 < � and �

2 < �

• No optical flow can be computed; u and v are zero.

EVALUATION OF FLOW ACCURACY
The algorithm’s implementation is evaluated based on its
accuracy in computing optical flow. This evaluation
looked at two main aspects: is the computed optical flow
equivalent to the actual displacement of pixels between
video frames and does the accuracy of the computed flow
differ as pixel displacements increase between frames.

101010101010
101010101010
105551010
105551010
105551010
101010101010

1-808-1

�����

	�
���

��

Iy (2,2) = (-1 * 10 + 8 * 5 + 0 * 5 + -8 * 5 + 1 * 10) / 12

101010101010
101010101010
105551010
105551010
105551010
101010101010

1-808-1

�����

	�
���

��

Iy (2,2) = (-1 * 10 + 8 * 5 + 0 * 5 + -8 * 5 + 1 * 10) / 12
Figure 5: A sample gradient calculation for Iy.

101010101010
101010101010
105551010
105551010
105551010
101010101010

1-808-1

�����

	�
���

��

Ix (2,2) = (-1 * 10 + 8 * 10 + 0 * 5 + -8 * 5 + 1 * 5) / 12

101010101010
101010101010
105551010
105551010
105551010
101010101010

1-808-1

�����

	�
���

��

Ix (2,2) = (-1 * 10 + 8 * 10 + 0 * 5 + -8 * 5 + 1 * 5) / 12
Figure 4: A sample gradient calculation for Ix.

Figure 7: A sample gradient smoothing for Ix2

.

������

������

������

������

������

������

������

������

������

������

������

������

����� �����

�����

	�
���

��

It (2,2) = (-1 * 5 + 8 * 5 + 0 * 5 + -8 * 5 + 1 * 10) / 12

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

��

�����
���

Figure 6: A sample gradient calculation for It..

 Neustaedter, 2002

- 4 -

Materials
A set of 26 accuracy-test video sequences was created to
test the accuracy of the algorithm. The test set contains a
series of four videos, 176 x 144 pixels in size (QCIF
videoconferencing size), containing a square of 40 x 40
pixels, which is composed of random colours. Each of
these four videos shows the square moving at a rate of 1
pixel/frame either left, right, up, or down on a background
composed also of random colours. These videos are 50
frames in length and play at a rate of 10 fps. Figure 10
shows the video of the square moving down; videos of the
square moving left, right, or up are very similar. The
accuracy-test set also includes 19 video sequences
containing the same square moving left, except at speeds
ranging from 2 pixels/frame to 20 pixels/frame.

Three of the accuracy-test video sequences were
captured using a Winnov Videum PC Camera (Figure 10).
The first contains an actor walking across the room from
left to right. The second video contains an actor sitting in
front of a computer working and moving his head left and
right. The final video shows the same actor working while
moving his head left and right, and now contains a second
actor walking behind him across the scene from left to
right. All three videos are 176 x 144 pixels in size, 75

frames in length, and play at a rate of 15 fps. Pixel
displacements within each scene are unknown, and
unfortunately each of these videos suffers from the capture
effects of the Winnov camera.
Method
First, a series of four square test patterns was used to test
the accuracy of the optical flow in each major direction:
left, right, up, and down. Optical flow for each frame is
stored in a file and also used as input for an output video
sequence that visually displays the optical flow. The output
video sequence is of the same frame size, but contains two
frames less than the original video because for the last two
frames a five-frame window does not exist and the
algorithm is unable to compute flow. In the output video,
red is used to indicate flow in x where a value of 255
indicates a magnitude of flow greater than or equal to 3,
170 indicates a magnitude of flow equal to 2, 70 indicates a
magnitude of flow equal to 1, and 0 indicates no flow. The
output video uses blue to show flow in y and uses the same
value system as red. Each pixel’s green component is set to
zero. The flow stored in the output file is compared to the
actual pixel displacements, and the output frame sequence
is used to visually detect problems in computation.

Next, 19 square test patterns were used to test the
accuracy of flow at pixel displacements ranging from 2
pixels/frame to 20 pixels/frame. Optical flow for each
frame is also stored in a file and the same output video
sequences are created. Again, the flow stored in the output
file is compared to the actual pixel displacements, and the
output frame sequence is used to visually detect problems
in computation.

Finally, 3 test patterns containing human actors are
used to further analyze the accuracy of the output. Optical
flow for each frame is again stored in a file and the same

a) Square moving down. b) Walking left to right.

c) Moving head left and right. d) Moving head and walking.
Figure 10: Four input videos (not shown at actual size).

� wIx
2 � wIxIy

� wIy
2� wIxIy

a11 a12

a22a21

�

1. det (A – �I) = 0

2. (a11 – �)(a22 – �) – (a12)2 = 0

3. �2 – �(a11 + a22) + a11a22 – a12
2

A =

Figure 8: The steps taken to create a quadratic equation
for the 2 x 2 matrix A.

� = -b ± b2 – 4ac

2a
a = 1

b = - (a11 + a22)

c = a11a22 – a12
2

Figure 9: The quadratic formula used to find two
eigenvalues for the 2x2 matrix.

 Neustaedter, 2002

- 5 -

output video sequences are created. This output video is
used to visually analyze the accuracy of the flow, but flow
values found in the file are not analyzed because the actual
pixel displacements in the video are unknown.
Results
The algorithm is able to compute optical flow for all four
video sequences containing the square moving at 1
pixel/frame with a large degree of accuracy. Flow for the
moving pixels is computed within a 2-pixel range, i.e. for
pixels moving at a rate of 1 pixel/frame, the algorithm
either computed 1, 2, or 3 for the pixel’s flow. An
exception occurs for regions along the edge of the square
where the algorithm is much less accurate. The output
videos, shown in figure 11, display flow in x with red and
flow in y with blue. Visually it is apparent that the flow is
quite accurate and the algorithm is able to detect the correct
size and shape of the moving object, as well as differentiate
between flow in x and y.

The 19 test sequences that compare pixel
displacements per frame show less accuracy in three
respects. First, when pixel speeds are greater than 1
pixel/frame, the algorithm begins to fail in correctly
differentiating flow between x and y. For the square
moving left, flow artifacts begin to appear in y and this
trend increases as speed increases. Figure 12 visually
confirms this trend in optical flow output. An analysis of
program execution shows that the majority of regions
containing y artifacts also contain large eigenvalues and u
and v are computed using the least squares method
presented in the first eigenvalue case. Secondly, when
pixel speeds are greater than 3 pixels/frame, the algorithm
begins to fail in correctly identifying the shape of the
moving object; flow artifacts begin to appear behind the
moving square where no flow should be present. Again,

program execution shows that these regions also contain
large eigenvalues and use the least squares method.
Finally, when pixel speeds are greater than 4 pixels/frame
the accuracy of the flow’s magnitude begins to deteriorate
and the algorithm computes the flow within a 4-pixel range,
i.e. for pixels moving at a rate of 1 pixel/frame, the
algorithm computes a flow magnitude between 1 and 5.

The final three test sequences contain unknown pixel
displacements and the output flow values cannot be
compared directly. Figure 13 shows the output flow video
for each of the these test sequences. Visual analysis of the
first video containing the actor walking shows that the
majority of the movement is in x, which is correct. It also
shows motion in y as the person walks, which accounts for
slight movements in y during each stride. The second
output video of the actor working while moving his head,

a) Motion: Down b) Motion: Up

c) Motion: Left d) Motion: Right
Figure 11: Four output videos of optical flow for a moving
square (not shown at actual size).

a) Speed: 1 pixel/frame b) Speed: 2 pixels/frame

c) Speed: 4 pixels/frame d) Speed: 6 pixels/frame

e) Speed: 8 pixels/frame f) Speed: 10 pixels/frame

g) Speed: 15 pixels/frame h) Speed: 20 pixels/frame
Figure 12: Eight output videos of optical flow for a moving
square (not shown at actual size).

 Neustaedter, 2002

- 6 -

visually confirms that motion is almost solely in x and it is
also apparent that these motions are very subtle as indicated
by the light shades of red. The third video shows that the
algorithm is capable of differentiating two different rates of
motion: the faster motion of the walking person and the
subtle head movements of the working person.
EVALUATION OF COMPUTATION PERFORMANCE
The algorithm’s implementation is also evaluated based on
its computational performance in computing optical flow.
This evaluation compared the number of frames
computable per second for varying frame sizes and
monitored the processor’s utilization.
Materials
A set of 7 computation-test video sequences was created to
test the computation rate of the algorithm. Each video in
the set contains a 40 x 40 square composed of random
colours. The square moves at a rate of 1 pixel/frame over a
background composed of random colours. Videos are 50
frames in length and play at a rate of 10 fps. The frame
sizes selected for testing are:

1. 100 x 100

2. 160 x 120

3. 176 x 144 (QCIF)

4. 320 x 240

5. 352 x 288 (CIF)

6. 640 x 480

7. 720 x 480 (DV)
Method
Each of the 7 test videos is used as input to the optical flow
algorithm. The total computation time for each frame size
is recorded along with the corresponding frame per second
processing rate. Each test video is processed for optical
flow on a Dell workstation with a 1.4 GHz Intel Xeon
processor and 512 MB of RAM running Windows XP as
the operating system. Several background applications
were running during testing, similar to typical scenarios
when videoconferencing software is used.
Results
Processing rates range from ~20 fps for 100 x 100 size
frames to ~0.5 fps for 720 x 480 size frames. Processing
rates for all frame sizes are shown in figure 14. Ideal
videoconferencing frame sizes of CIF and 320 x 240 were
computed at a rate of ~1.8 fps and ~2.5 fps, respectively.
During computation, the processor utilization was 100% for
all frame sizes, as compared to ~10-30% utilization prior to
computation.
DISCUSSION
In order to apply optical flow to videoconferencing systems
that address privacy concerns, the optical flow algorithm
must meet two main criteria. First, it should be accurate
enough to distinguish regions of differing activity levels,
for example, distinguishing regions containing someone
working from regions containing someone walking into a
room in the background. Second, it must be able to
compute optical flow in real-time so that frames can be
processed prior to being broadcast to others.

The optical flow implementation presented is capable
of differentiating regions of different activity level. For
example, figure 13c shows that the background motion of
the person walking is much larger than the motion of the
person who is working. Closer analysis of the computed
flow shows that as the speed of objects increase, the
accuracy of the algorithm deteriorates by first failing to
completely distinguish flow in x from flow in y and then by
failing to identifying the correct shape and size of the
moving object. The algorithm was tested with speeds of up
to 20 pixels/frame, yet it is unlikely that video containing
people will have movement of this magnitude, especially if
the intended use is capturing work activity. The algorithm
fails to compute high displacement rates correctly because
pixels begin to move outside the 5 x 5 window that is used
to compute and smooth gradient estimations. If it were
desirable to handle high displacements, a larger window
size could be evaluated. For privacy applications, the flow
produced is accurate enough.

The implementation is also seen to tax the
workstation’s processor quite heavily, yet it is clear that the

a) Walking left to right.

b) Moving head left and right.

c) Moving head and walking.
Figure 13: Three output videos of optical flow for moving
actors, each shown at 2 points in time (not shown at actual
size).

 Neustaedter, 2002

- 7 -

computational power of processors and other hardware
peripherals will only increase in the future, thus easily
remedying this problem. When using videoconferencing
over the Internet, users are normally capable of obtaining
frame rates between 5 and 10 fps, depending greatly on the
Internet connection used and network congestion. As
expected, when frame size increases so does the
computation time and the corresponding frame per second
flow output suffers as a result. The computation of QCIF
frames and smaller frame sizes either fell within the ideal
videoconferencing frame rates or exceeded its performance
requirements. It is desirable, however, to use a frame size
of 320 x 240 for videoconferencing, which is larger than
QCIF frames. This size fell outside the desired rate, but it
is expected that implementation optimization could
improve its performance to a desirable level. Possible
alterations may include optimizing calculations for specific
processor technology and using less numerical precision
during computation.

Although the flow output has not been used explicitly
in any privacy preservation techniques, video frames that
visually display flow present an interesting situation
(Figures 11, 12, and 13). Flow frames naturally mask both
the background details of a scene and the person’s
appearance in a scene. As well, a person’s activity
becomes partially masked – it is possible to understand the
general activity of the person, but specific details are
unknown (Figure 13). Flow output appears to offer its own

form of privacy preservation, yet this idea still requires its
own evaluation.
FUTURE WORK
The current implementation is capable of extracting frames
from an AVI file and producing a second AVI that visually
represents the optical flow computed. Future versions
should be capable of using frames directly from an attached
PC camera, especially if optical flow is to be applied as a
tool for videoconferencing.

The current implementation shows that optical flow is
capable of differentiating regions of a video containing
varying levels of activity. Future implementations should
use the calculated optical flow as input to a privacy
preservation technique such as blur filtration, where regions
of high activity could be blurred more than regions of low
activity. Such a design could also be evaluated for its
computational performance, as well as its effectiveness in
preserving the privacy of multiple individuals.
CONCLUSION
Video is used by distance-separated workers, whether
working from home or an office, for providing awareness
information to others. This awareness is used to decide if
and when to move into conversation or collaboration.
When using video, however, information that may be
considered threatening to one’s privacy is broadcast to
others. Optical flow presents a method for detecting
varying degrees of activity in video, which could be used in
conjunction with privacy preservation techniques. Such

Figure 14: The processing rate of each frame size tested.

 Neustaedter, 2002

- 8 -

techniques attempt to mask sensitive details in video where
multiple people may be present. To be used with privacy
sensitive videoconferencing systems, optical flow must be
computable in a real-time and present a reasonable level of
accuracy.

This paper presented an implementation of Lucas and
Kanade’s [13] differentiation method for computing optical
flow in video. The implementation has been shown to
compute flow in real-time for small image sizes and
presents a desirable level of flow accuracy, capable of
distinguishing regions varying in activity level. The
algorithm does consume a large amount of system
resources, however it is predicted that continuing
technological improvements in computer hardware will
resolve this problem. The implementation has yet to be
used in conjunction with privacy preservation techniques,
although it presents its own technique where videos
visualizing the flow output naturally mask details of a
person’s appearance and the appearance of the captured
location.

Acknowledgements. Thanks to Michael Boyle for his
invaluable help and for the use of his collaborative
multimedia toolkit.
REFERENCES
1. Barron, J.L., Fleet, D.J., Beauchemin. (1994),

Performance of Optical Flow Techniques. Proc. of
International Joint Conference of Computer Vision,
Vol. 12, No. 1, pp. 43-77

2. Bellotti, V. (1996), What you don’t know can hurt you:
Privacy in Collaborative Computing. Proc. HCI ’96,
Springer, pp. 241-261.

3. Bellotti, V., and Sellen, A. (1993), Design for Privacy in
Ubiquitous Computing Environments, in Proceedings of
the Third European Conference on Computer-
Supported Cooperative Work (ECSCW’93), Kluwer
Academic Publishers, Milan, pp. 77-92.

4. Bly, S., Harrison, S. and Irvin, S. (1993) Media spaces:
Bringing people together in a video, audio, and
computing environment. Communications of the ACM
36(1), ACM Press, pp. 28-46.

5. Boyle, M., Edwards, C. and Greenberg, S. (2000), The
Effects of Filtered Video on Awareness and Privacy,
Proceedings of the CSCW'00 Conference on Computer
Supported Cooperative Work [CHI Letters 2(3)], ACM
Press.

6. Fish, R., Kraut, R., Root, R., & Rice, R. (1992),
Evaluating video as a technology for informal

communication, Proc. of CHI ’92 Human Factors in
Computing Systems, New York: ACM Press, pp. 37-48.

7. Greenberg, Saul. (1996), Peepholes: Low Cost
Awareness of One's Community, ACM SIGCHI'96
Conference on Human Factors in Computing System,
Companion Proceedings, pp. 206-207.

8. Greenberg, S. and Kuzuoka, H. (2000). Using Digital
but Physical Surrogates to Mediate Awareness,
Communication and Privacy in Media Spaces. Personal
Technologies, 4(1), January.

9. Hudson, S.E., and Smith, I. (1996), Techniques for
Addressing Fundamental Privacy and Disruption
Tradeoffs in Awareness Support Systems, in
Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW’96), Cambridge, MA.

10. Kraut, R., Egido, C., and Galegher, J. (1988), Patterns
of contact and communication in scientific observation.
Proc ACM CSCW ’88, pp. 1-12.

11. Lee, A., Girgensohn, A., Schlueter, K. (1997) NYNEX
Portholes: Initial User Reactions and Redesign
Implications, Group ’97, ACM Press, pp. 385-394.

12. Lim, S., Gamal, A., (2001) Optical Flow Estimation
using High Frame Rate Sequences, Proceedings of the
2001 International Conference on Image Processing,
v.2, p.925-928.

13. Lucas, B., and Kanade, T. (1981) An Iterative Image
Registration Technique with an Application to Stereo
Vision, Proc. of 7th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 674-679.

14. Mantei, M., Baecker, R., Sellen, A., Buxton, W.,
Milligan, T., and Wellman, B. (1991) Experiences in the
use of a media space. Proc. of CHI ’91 Human Factors
in Computing Systems, New York: ACM Press, pp. 203-
209.

15. Tang, J.C., Isaacs, E., and Rua, M. (1994). Supporting
Distributed Groups with a Montage of Lightweight
Interactions. Proc. of the ACM Conference on
Computer-Supported Cooperative Work, CSCW ’94,
ACM Press, pp. 23-34.

16. Whittaker, S., and O’Conaill, B. (1997), The Role of
Vision in Face-to-Face and Mediated Communication,
in Video Mediated Communication, Finn, Sellen, and
Wilbur eds., LEA Press.

17. Zhao, Q.A., and Stasko, J.T. (1998), Evaluating Image
Filtering Based Techniques in Media Space
Applications, in Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW’98),
Seattle, pp. 11-18.

