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ABSTRACT 
Video offers distance-separated co-workers with a rich 
awareness of who is available for conversation or 
collaboration.  By broadcasting video, however, the privacy 
of individuals becomes threatened because others now see 
potentially sensitive information.  This risk is heightened 
for telecommuters who use video to connect to a remote 
office from home.  Blurring video is one technique that has 
previously been studied to help preserve privacy.  Most 
blurring techniques blur the entire video, however, it is 
desirable to be able to blur regions of the video differently 
if multiple people are present.  Optical flow can be used in 
this situation to distinguish which regions contain different 
people by their level of activity.  This paper evaluates an 
implementation of Lucas and Kanade’s algorithm for 
computing optical flow and discusses possible applications 
for it in videoconferencing that is sensitive to privacy 
issues.  The implementation is found to compute accurate 
optical flow for small pixel displacements, yet real-time 
computation is only possible for small frame sizes. 

Keywords. Optical flow, Lucas and Kanade, video 
conferencing, motion, privacy. 
 

INTRODUCTION 
Everyday communication and interaction between co-
workers is held together by an awareness of those who are 
around and available [2,5,9].  Awareness helps people 
decide if and when to smoothly move into and out of 
conversation or collaboration.  This awareness is easily and 
naturally gained by those located in close physical 
proximity [7,16].  People can see if another is busy by 
simply glancing in their office or cubicle.  As people 
become spread over distance, however, this awareness 
becomes difficult to gain unless technology is present 
[7,10]. 

Video is capable of providing rich awareness over 
distance and has been suggested by many researchers as a 
technology capable of mediating communication [2,4-
8,11,14,15,17].  As video broadcasts information about 
one’s awareness, such as a user’s current activity and level 
of availability, it may be presenting information at an 
undesirable level and threatening the user’s privacy 
however.  The user’s privacy could be violated just as 
easily though if no awareness information is presented 

because a co-worker could interrupt at an inappropriate 
time. 

Telecommuters who work from home and connect to a 
remote office using video face increased privacy threats, as 
homes are inherently private in nature.  Video links place 
telecommuters in two different environments where there is 
a disparity between levels of appropriateness.  For example, 
working without a shirt on may be quite appropriate for 
those working at home, but the same level of undress is not 
appropriate for an office environment.  Video attempts to 
place the telecommuter under the appropriateness 
constraints of both locations.  To further complicate the 
situation, others present in the home, such as family 
members who gain no benefit from the video link still incur 
the privacy threat. 

Blur filtration is one technique that has been studied to 
mask sensitive details in video that may be considered 
threatening to one’s privacy [5,17], such as a person’s 
activity, a person’s appearance, or the location and its 
appearance.  Most filtration techniques are only capable of 
masking the entire video sequence an equal amount.  In 
cases where multiple people are present within a home 
there exists a desire to be able to blur regions of the video 
differently for each person.  Some people, such as the 
telecommuter working, may be appropriate to broadcast at 
full fidelity while someone walking into the room in 
varying levels of undress may not be.  The person working 
could be blurred less than the person walking into the 
room.  For such situations, being able to distinguish 
between a high level of activity and a low level of activity 
would be desirable.  Areas of high activity, such as a 
secondary person walking into a room could be blurred 
more than a region containing someone working. 

Optical flow algorithms show potential in this area 
because they are able to compute motion between frames of 
video.  The optical flow that is computed for each pixel in a 
frame could be used to determine which regions of the 
video frame contain large amounts of flow or motion.  
These regions could then be treated accordingly for their 
suspected level of privacy threat.  Many optical flow 
algorithms are quite computationally expensive, however, 
and not suitable for use while transmitting video to others.  
Lucas and Kanade [13] present a differentiation method for 
computing optical flow that has shown computational 
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potential in various implementations by other researchers 
[1,12]. 

This paper discusses an implementation of the Lucas 
and Kanade algorithm for computing optical flow and its 
application to privacy preservation techniques for 
mediating privacy when video is used in homes.  The 
implementation is evaluated based on its accuracy in 
computing flow and distinguishing levels of high activity 
from levels of low activity.  The computation performance 
of the implementation is also analyzed for various frame 
sizes. 
RELATED WORK 
The algorithm presented by Lucas and Kanade [13] is an 
image registration technique that can be used to compute 
optical flow.  Image registration techniques attempt to find 
an optimal value for a disparity vector, h, which represents 
an object’s displacement between successive images.  
Methods to find the disparity vector prior to Lucas and 
Kanade relied on computationally expensive or non-
optimal techniques.  One such method performs an 
exhaustive search for h that examines all possible values 
for the disparity vector [13].  An alternative strategy is 
found in hill-climbing techniques that evaluate difference 
functions at all points in a region, choosing the point that 
minimizes the difference [13].  Hill-climbing techniques 
can lead to false peaks that produce local, rather than 
global, optimums for h however.  A third technique, 
sequential similarity detection, computes an error value for 
each possible disparity vector and then applies a method 
similar to alpha-beta pruning in min-max trees, where 
disparity vectors with large error values are eliminated 
[13]. 

Lucas and Kanade’s algorithm [13] presents an image 
registration method that examines fewer possible values of 
h than previous algorithms to improve computation 
performance.  An initial estimate of h is made and then 
iteratively updated based on the average spatial intensity 
gradient found at each point within a fixed sized window.  
The contribution of each gradient to the value of h is 
weighted based on an estimate of the gradient’s error.  
Iteration ceases after a specified length of time or when h 
converges.  Smoothing an image is shown to help improve 
convergence, but can cause greater errors if an object is 
suppressed entirely [13].  It is assumed in the algorithm that 
pixels from the image are moving at a constant velocity and 
corresponding pixels in the images fall within a fixed sized 
window.  An implemented version of Lucas and Kanade’s 
algorithm is described in Barron, Fleet, and Beauchemin 
[1].   

Lim and Gamal [12] use a modified version of Lucas 
and Kanade’s algorithm that utilizes advancements in 
CMOS image sensor technology to compute more accurate 
optical flow measurements using high frame rates.   Their 
technique first computes an optical flow estimate between 
two frames at high frame rates using the Lucas and Kanade 
method.  Next, the optical flow is computed from the 
successive images at standard frame rates.  This new value 
is combined with the initial estimate to create a final flow 
value.  Lim and Gamal conclude that by using high frame 
rate sequences they are able to handle pixel displacements 
of up to 10 pixels/frame at 30 frames/sec, which is much 
higher than the reported 1-2 pixels/frame displacement 
capabilities of the original Lucas and Kanade algorithm. 
IMPLEMENTATION 
The Lucas and Kanade algorithm as described by Barron et 
al. [1] follows four main steps to compute optical flow for 
each frame in a video sequence.  Frames are first smoothed 
with a spatiotemporal filter to reduce errors in gradient 
estimation (Figure 2).  Next, gradients are estimated in x, y, 
and t (time) for each pixel in the current frame.  Gradients 
are then smoothed and placed in a linear system (Figure 1).  
Finally, the linear system is solved for the two velocity 
components, u and v.  This section describes the 
implementation used and discusses areas where deviations 
from other implementations were made. 

Spatiotemporal Smoothing.  Each frame must be smoothed 
to reduce errors that may be produced during 
differentiation.  Smoothing first occurs spatially where a 1d 
filter is used to convolve the image first in x and then y, 
similar to standard image smoothing techniques.  To 
smooth temporally, Barron et al. [1] suggest using a 
Gaussian filter with standard deviation of 1.5 pixels-
frames.  This requires the storage of a large set of frames 
for smoothing and delays the algorithm’s flow output, 
which is undesired if the implementation is to be used in 
broadcasting video over the Internet.  To alleviate this 
problem, my implementation uses a simple two-frame 
weighted average.  The current pixel’s value is averaged 
with the pixel from the same location in the previous frame, 
where α gives more weight to the value of the current 

     
Figure 2: A video frame (left) compared to its smoothed 
version (right). 
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Figure 3: The formula for temporally smoothing the value, 
E, of a pixel. 
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Figure 1: The linear equation used for computing the 
optical flow components, u and v 
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frame’s pixel (Figure 3).  A sample frame and its smoothed 
frame are shown in Figure 2. 

Estimating the Gradients.  Each frame is convolved in x, y, 
and t with a 1 x 5 kernel to compute Ix, Iy, and It, for each 
pixel.  The kernel used in the implementation is shown in 
figures 4 and 5 along with calculations of Ix and Iy using a 
sample set of image values.   The same kernel is used by 
Barron et. al [1].  Gradients in x and y can be computed 
within the current frame, however It must be computed 
using a set of five frames – the current frame, two previous 
frames, and two subsequent frames – as shown in figure 6. 
The five-frame window needed for It causes output to be 

delayed by two frames, but for video conferencing this 
would be seemingly unnoticeable at standard video frame 
rates.  As well, for the first two frames and the last two 
frames in a frame sequence optical flow is not computable 
because a five-frame window is not available.  Next, Ix, Iy, 
and It  are used to calculate Ix

2, Iy
2, IxIy,, IxIt,, and IyIt,. 

Gradient Smoothing.  Gradients are now smoothed for each 
pixel in the frame within a 5 x 5 window using a 5 x 5 
kernel.  The kernel used, as suggested by Barron et. al [1], 
is shown in figure 7 along with a sample smoothing 
calculation for Ix

2.  The kernel gives greater weight to 
gradients near the center of the 5 x 5 window. 

Solving the Linear System.  A linear system is constructed, 
as shown in figure 1, to contain all gradient information.  
Next, the 2 x 2 matrix containing gradient information for x 
and y (Figure 1) can be solved by first creating the 
quadratic equation shown in steps 1-3 of figure 8.  This 
equation can then be solved for its two eigenvalues, �

1
 and 

�
2, using the quadratic formula shown in figure 9.  Once the 

eigenvalues are found, they are compared to a threshold, 
�=1, and will fall into one of three cases: 
 
Case 1:  �

1 � �  and   �
2 � � 

• A is invertible and the system can be solved for 
the two velocity components, u and v using 
elementary linear algebra. 

Case 2:  �
1 � �  and   �

2 < � 

• A is singular and therefore non-invertible; the 
gradient flow is then normalized to give u and v. 

Case 3:  �
1 < �  and   �

2 < � 

• No optical flow can be computed; u and v are zero. 

 
EVALUATION OF FLOW ACCURACY 
The algorithm’s implementation is evaluated based on its 
accuracy in computing optical flow.  This evaluation 
looked at two main aspects: is the computed optical flow 
equivalent to the actual displacement of pixels between 
video frames and does the accuracy of the computed flow 
differ as pixel displacements increase between frames. 
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Figure 5:  A sample gradient calculation for Iy. 
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Figure 4:  A sample gradient calculation for Ix. 

 

 
Figure 7:  A sample gradient smoothing for Ix2
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Figure 6:  A sample gradient calculation for It.. 
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Materials 
A set of 26 accuracy-test video sequences was created to 
test the accuracy of the algorithm. The test set contains a 
series of four videos, 176 x 144 pixels in size (QCIF 
videoconferencing size), containing a square of 40 x 40 
pixels, which is composed of random colours.  Each of 
these four videos shows the square moving at a rate of 1 
pixel/frame either left, right, up, or down on a background 
composed also of random colours.  These videos are 50 
frames in length and play at a rate of 10 fps.  Figure 10 
shows the video of the square moving down; videos of the 
square moving left, right, or up are very similar.  The 
accuracy-test set also includes 19 video sequences 
containing the same square moving left, except at speeds 
ranging from 2 pixels/frame to 20 pixels/frame.  

Three of the accuracy-test video sequences were 
captured using a Winnov Videum PC Camera (Figure 10).  
The first contains an actor walking across the room from 
left to right. The second video contains an actor sitting in 
front of a computer working and moving his head left and 
right.  The final video shows the same actor working while 
moving his head left and right, and now contains a second 
actor walking behind him across the scene from left to 
right.  All three videos are 176 x 144 pixels in size, 75 

frames in length, and play at a rate of 15 fps.  Pixel 
displacements within each scene are unknown, and 
unfortunately each of these videos suffers from the capture 
effects of the Winnov camera. 
Method 
First, a series of four square test patterns was used to test 
the accuracy of the optical flow in each major direction: 
left, right, up, and down.  Optical flow for each frame is 
stored in a file and also used as input for an output video 
sequence that visually displays the optical flow.  The output 
video sequence is of the same frame size, but contains two 
frames less than the original video because for the last two 
frames a five-frame window does not exist and the 
algorithm is unable to compute flow.  In the output video, 
red is used to indicate flow in x where a value of 255 
indicates a magnitude of flow greater than or equal to 3, 
170 indicates a magnitude of flow equal to 2, 70 indicates a 
magnitude of flow equal to 1, and 0 indicates no flow.  The 
output video uses blue to show flow in y and uses the same 
value system as red.  Each pixel’s green component is set to 
zero.  The flow stored in the output file is compared to the 
actual pixel displacements, and the output frame sequence 
is used to visually detect problems in computation. 

Next, 19 square test patterns were used to test the 
accuracy of flow at pixel displacements ranging from 2 
pixels/frame to 20 pixels/frame.  Optical flow for each 
frame is also stored in a file and the same output video 
sequences are created.  Again, the flow stored in the output 
file is compared to the actual pixel displacements, and the 
output frame sequence is used to visually detect problems 
in computation. 

Finally, 3 test patterns containing human actors are 
used to further analyze the accuracy of the output.  Optical 
flow for each frame is again stored in a file and the same 

   
a) Square moving down. b) Walking left to right. 

    
c) Moving head left and right. d) Moving head and walking.  
Figure 10:  Four input videos (not shown at actual size). 
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output video sequences are created.  This output video is 
used to visually analyze the accuracy of the flow, but flow 
values found in the file are not analyzed because the actual 
pixel displacements in the video are unknown. 
Results 
The algorithm is able to compute optical flow for all four 
video sequences containing the square moving at 1 
pixel/frame with a large degree of accuracy.  Flow for the 
moving pixels is computed within a 2-pixel range, i.e. for 
pixels moving at a rate of 1 pixel/frame, the algorithm 
either computed 1, 2, or 3 for the pixel’s flow.   An 
exception occurs for regions along the edge of the square 
where the algorithm is much less accurate.  The output 
videos, shown in figure 11, display flow in x with red and 
flow in y with blue.  Visually it is apparent that the flow is 
quite accurate and the algorithm is able to detect the correct 
size and shape of the moving object, as well as differentiate 
between flow in x and y. 

The 19 test sequences that compare pixel 
displacements per frame show less accuracy in three 
respects.  First, when pixel speeds are greater than 1 
pixel/frame, the algorithm begins to fail in correctly 
differentiating flow between x and y.  For the square 
moving left, flow artifacts begin to appear in y and this 
trend increases as speed increases.  Figure 12 visually 
confirms this trend in optical flow output.  An analysis of 
program execution shows that the majority of regions 
containing y artifacts also contain large eigenvalues and u 
and v are computed using the least squares method 
presented in the first eigenvalue case.  Secondly, when 
pixel speeds are greater than 3 pixels/frame, the algorithm 
begins to fail in correctly identifying the shape of the 
moving object; flow artifacts begin to appear behind the 
moving square where no flow should be present.  Again, 

program execution shows that these regions also contain 
large eigenvalues and use the least squares method.  
Finally, when pixel speeds are greater than 4 pixels/frame 
the accuracy of the flow’s magnitude begins to deteriorate 
and the algorithm computes the flow within a 4-pixel range, 
i.e. for pixels moving at a rate of 1 pixel/frame, the 
algorithm computes a flow magnitude between 1 and 5. 

The final three test sequences contain unknown pixel 
displacements and the output flow values cannot be 
compared directly.  Figure 13 shows the output flow video 
for each of the these test sequences.  Visual analysis of the 
first video containing the actor walking shows that the 
majority of the movement is in x, which is correct.  It also 
shows motion in y as the person walks, which accounts for 
slight movements in y during each stride.  The second 
output video of the actor working while moving his head, 

  
a) Motion: Down b) Motion: Up 

   
c) Motion: Left d) Motion: Right 
Figure 11:  Four output videos of optical flow for a moving 
square (not shown at actual size). 

  
a) Speed: 1 pixel/frame b) Speed: 2 pixels/frame 

  
c) Speed: 4 pixels/frame d) Speed: 6 pixels/frame 

  
e) Speed: 8 pixels/frame f) Speed: 10 pixels/frame 

  
g) Speed: 15 pixels/frame h) Speed: 20 pixels/frame 
Figure 12:  Eight output videos of optical flow for a moving 
square (not shown at actual size). 
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visually confirms that motion is almost solely in x and it is 
also apparent that these motions are very subtle as indicated 
by the light shades of red.  The third video shows that the 
algorithm is capable of differentiating two different rates of 
motion: the faster motion of the walking person and the 
subtle head movements of the working person. 
EVALUATION OF COMPUTATION PERFORMANCE 
The algorithm’s implementation is also evaluated based on 
its computational performance in computing optical flow.  
This evaluation compared the number of frames 
computable per second for varying frame sizes and 
monitored the processor’s utilization. 
Materials 
A set of 7 computation-test video sequences was created to 
test the computation rate of the algorithm. Each video in 
the set contains a 40 x 40 square composed of random 
colours.  The square moves at a rate of 1 pixel/frame over a 
background composed of random colours.  Videos are 50 
frames in length and play at a rate of 10 fps.  The frame 
sizes selected for testing are:  

1. 100 x 100 

2. 160 x 120 

3. 176 x 144 (QCIF) 

4. 320 x 240 

5. 352 x 288 (CIF) 

6. 640 x 480 

7. 720 x 480 (DV) 
Method 
Each of the 7 test videos is used as input to the optical flow 
algorithm.  The total computation time for each frame size 
is recorded along with the corresponding frame per second 
processing rate.  Each test video is processed for optical 
flow on a Dell workstation with a 1.4 GHz Intel Xeon 
processor and 512 MB of RAM running Windows XP as 
the operating system.  Several background applications 
were running during testing, similar to typical scenarios 
when videoconferencing software is used. 
Results 
Processing rates range from ~20 fps for 100 x 100 size 
frames to ~0.5 fps for 720 x 480 size frames.  Processing 
rates for all frame sizes are shown in figure 14.  Ideal 
videoconferencing frame sizes of CIF and 320 x 240 were 
computed at a rate of ~1.8 fps and ~2.5 fps, respectively.   
During computation, the processor utilization was 100% for 
all frame sizes, as compared to ~10-30% utilization prior to 
computation. 
DISCUSSION 
In order to apply optical flow to videoconferencing systems 
that address privacy concerns, the optical flow algorithm 
must meet two main criteria.  First, it should be accurate 
enough to distinguish regions of differing activity levels, 
for example, distinguishing regions containing someone 
working from regions containing someone walking into a 
room in the background.  Second, it must be able to 
compute optical flow in real-time so that frames can be 
processed prior to being broadcast to others. 

The optical flow implementation presented is capable 
of differentiating regions of different activity level.  For 
example, figure 13c shows that the background motion of 
the person walking is much larger than the motion of the 
person who is working.  Closer analysis of the computed 
flow shows that as the speed of objects increase, the 
accuracy of the algorithm deteriorates by first failing to 
completely distinguish flow in x from flow in y and then by 
failing to identifying the correct shape and size of the 
moving object.  The algorithm was tested with speeds of up 
to 20 pixels/frame, yet it is unlikely that video containing 
people will have movement of this magnitude, especially if 
the intended use is capturing work activity.  The algorithm 
fails to compute high displacement rates correctly because 
pixels begin to move outside the 5 x 5 window that is used 
to compute and smooth gradient estimations.  If it were 
desirable to handle high displacements, a larger window 
size could be evaluated.  For privacy applications, the flow 
produced is accurate enough. 

The implementation is also seen to tax the 
workstation’s processor quite heavily, yet it is clear that the 

  
a) Walking left to right. 

  
b) Moving head left and right. 

 
c) Moving head and walking. 
Figure 13:  Three output videos of optical flow for moving 
actors, each shown at 2 points in time (not shown at actual 
size). 
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computational power of processors and other hardware 
peripherals will only increase in the future, thus easily 
remedying this problem.  When using videoconferencing 
over the Internet, users are normally capable of obtaining 
frame rates between 5 and 10 fps, depending greatly on the 
Internet connection used and network congestion.  As 
expected, when frame size increases so does the 
computation time and the corresponding frame per second 
flow output suffers as a result.  The computation of QCIF 
frames and smaller frame sizes either fell within the ideal 
videoconferencing frame rates or exceeded its performance 
requirements.  It is desirable, however, to use a frame size 
of 320 x 240 for videoconferencing, which is larger than 
QCIF frames.  This size fell outside the desired rate, but it 
is expected that implementation optimization could 
improve its performance to a desirable level.  Possible 
alterations may include optimizing calculations for specific 
processor technology and using less numerical precision 
during computation. 

Although the flow output has not been used explicitly 
in any privacy preservation techniques, video frames that 
visually display flow present an interesting situation 
(Figures 11, 12, and 13).  Flow frames naturally mask both 
the background details of a scene and the person’s 
appearance in a scene.  As well, a person’s activity 
becomes partially masked – it is possible to understand the 
general activity of the person, but specific details are 
unknown (Figure 13).  Flow output appears to offer its own 

form of privacy preservation, yet this idea still requires its 
own evaluation. 
FUTURE WORK 
The current implementation is capable of extracting frames 
from an AVI file and producing a second AVI that visually 
represents the optical flow computed.  Future versions 
should be capable of using frames directly from an attached 
PC camera, especially if optical flow is to be applied as a 
tool for videoconferencing. 

The current implementation shows that optical flow is 
capable of differentiating regions of a video containing 
varying levels of activity.  Future implementations should 
use the calculated optical flow as input to a privacy 
preservation technique such as blur filtration, where regions 
of high activity could be blurred more than regions of low 
activity.  Such a design could also be evaluated for its 
computational performance, as well as its effectiveness in 
preserving the privacy of multiple individuals. 
CONCLUSION 
Video is used by distance-separated workers, whether 
working from home or an office, for providing awareness 
information to others.  This awareness is used to decide if 
and when to move into conversation or collaboration.  
When using video, however, information that may be 
considered threatening to one’s privacy is broadcast to 
others.  Optical flow presents a method for detecting 
varying degrees of activity in video, which could be used in 
conjunction with privacy preservation techniques.  Such 

 
Figure 14:  The processing rate of each frame size tested. 
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techniques attempt to mask sensitive details in video where 
multiple people may be present.  To be used with privacy 
sensitive videoconferencing systems, optical flow must be 
computable in a real-time and present a reasonable level of 
accuracy.   

This paper presented an implementation of Lucas and 
Kanade’s [13] differentiation method for computing optical 
flow in video.  The implementation has been shown to 
compute flow in real-time for small image sizes and 
presents a desirable level of flow accuracy, capable of 
distinguishing regions varying in activity level.  The 
algorithm does consume a large amount of system 
resources, however it is predicted that continuing 
technological improvements in computer hardware will 
resolve this problem.  The implementation has yet to be 
used in conjunction with privacy preservation techniques, 
although it presents its own technique where videos 
visualizing the flow output naturally mask details of a 
person’s appearance and the appearance of the captured 
location. 

Acknowledgements. Thanks to Michael Boyle for his 
invaluable help and for the use of his collaborative 
multimedia toolkit. 
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